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Desire to Detect and Quantify Fissile Materials 
During Arms Reduction Negotiations

• START I and START II Require Verification
– Quantify Number and Size
– Monitor Material Movement In/Out of Facilities

• Passive Radiation Detection Problematic
– Fissile Materials Not Very Radioactive
– Easy to Shield Radiation

• Also Developed for Quality Assurance and Waste Assaying

Are These 
Real?



Active Evaluation Techniques Use Radiation as Probe

• External Radiation Sources
– Neutron [ (n,x) Reactions ]

• Radioisotope
• Accelerators

– γ-rays [ (γ,x) Reactions ]
• Accelerators

Radiation
Detectors

• Resulting Emission
– Neutrons

• Prompt
• Delayed (Fissionable Materials)

– High Energy Photons
• x-rays (XRF)
• γ-rays (NRF, Capture, Activ.)

• Provide Signature of Material

n

γ-Ray

Neutron

or



Active Techniques Applied to Material Accountability 

• Reprocessing: Old Fuel → New Fuel
• Techniques to Monitor Fissile Material Quantities

– Real Time
– Accurate
– Sensitive

• Less Separation → More Difficult to Quantify

Dissolved
Fuel UREX CDC-PEG NPEX TRUEX Cyanex

301

U Tc Cs/Sr Fission
ProductsNp/Pu Am/Cm

Waste

Key Points
of Concern



Active Evaluation Applicable to Homeland Security

• Commerce → Movement of Goods
– 95% Arrives by Ship
– 22.5 Million Cargo Containers
– 118 Million Vehicles

• Very Few Inspected
– 2% of Containers Inspected

• Fissile Material Abundant
– ~100 Tons in Storage
– Located at 100’s of Sites
– Security at Some Sites is Lax
– Some Material is “Missing”

• ~4 kg 239Pu for a Crude Bomb
• Data Needs Overlap with DHS



Plethora of Radiation Emitted from Fission Reactions

• Prompt γ-ray Yield ~800%
• Prompt Neutron Yield ~200%

235U

Probing Radiation
Pulse

Before

n

n

Middle
β−
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After

Delayed
NeutronFission

Fragment

Prompt
Neutrons

Prompt
γ-rays

Delayed
γ-rays

t=10-11 sec

t=0 sec

t=10-3 to 100’s sec
• Delayed γ-ray Yield ~400%

– Most Materials Emit

• Delayed Neutron Yield ~2%
– Fissionable Materials Only



Neutron and γ-Rays Probes Complimentary

• Advantages
– Highly Penetrating in Low-Z
– Easier to Detect Neutrons
– Forward Directed
– Accelerators Very Robust

• Disadvantages
– Shielded by High-Z
– Hard to Detect γ-Rays
– Poorly Known Cross Sections

Neutron γ-Ray

• Advantages
– Highly Penetrating in High-Z
– Easier to Detect γ-rays
– Capture γ-rays Emitted
– Better Known Cross Sections

• Disadvantages
– Shielded by Low-Z
– Hard to Detect Neutrons
– Omni Directional

At Idaho Accelerator Center Only Tried Bremsstrahlung Beam



Photons or Neutrons Created by High-Z Converter

• γ-rays → Thin Converter (~ 1 mm)
• Neutrons → Thick Converter (~ 5 cm)
• Extensive Shielding May Be Required for Converter Emissions
• New High-Energy  γ-Ray Sources of Great Interest

– Monoenergetic!
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γ-Ray Emissions

Fissile Material Detection Techniques
Using γ-Ray Emissions



Activation Analysis Identifies Fissionable Material

• Fission Products “Unique”
– Neutron Rich
– Short Lived t1/2≈ 10 min.

• Could be Significant Contamination in Reprocessing
• High Radiation Fields Difficult for HPGe Detectors
• Need Accurate Fission Cross Section and Fragment Distributions

T. E. Cowan, A. W. Hunt et. al.



X-Ray Fluorescence Identifies Elements

• X-Ray Lines Provides Elemental Fingerprint
• Sensitivity ~ppm
• Not Isotope Specific
• Extensively Use in Literature (Waste Assay, Environmental and Medical)
• May Not Need Probe (e.g. Enough Natural Activity)
• High Radiation Fields Difficult for HPGe and Si Detectors
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Nuclear Resonance Fluorescence Provides Finger Print

• Photons Excite Nucleus
– Decays by Photon Emission
– Analogous to XRF
– Isotope Identification

• Physics is Proven 
– Levels Not Measured for 235U, 239Pu etc…

• Technology Not Developed
– Evaluation Time Could be Long
– Requires High Resolution Detectors (Problematic in High Radiation Fields)

Ground State

1st Excited

2nd Excited

γ-Ray In

γ-Ray Out

L. Kaeuble et. al.



Prompt γ-Rays Difficult to Distinguish Using Bremsstrahlung

• Atomic Cross Sections Dominate
• Fission γ-Rays Broad Energy Spectrum
• Need Prompt γ-Ray Energy Distribution
• Not Sure if Isotope Specific
• Want Higher Duty Factor Accelerator (New One Coming on Line)
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Ubiquitous Delayed γ-Rays from Fissionable Material

• ~100 Times More γ-rays for 238U in ~100’s ms
• Broad Energy Distribution (Careful Measurement Planned)
• Are There Short Lived Lines for Isotope Identification
• Need Delayed γ-Ray Energy Distribution
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Neutron Emissions

Fissile Material Detection Techniques
Using Neutron Emissions



Delayed Neutrons Excellent Signature of Fissionable Material

• Delayed Neutron Region beyond 5 ms
– 2×106 More Neutrons Detected for 238U

20 MeV Bremsstrahlung
7.5 Hz Rep. Rate
5 min Data Collection
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Decay of Delayed Neutron Emission
Allows Discrimination between Fissionable Material

• Decay Dictated by β- Emission and Precursor Yield

• λi; αi Decay Constant and Yield of Precursors

20 MeV Bremsstrahlung
7.5 Hz Rep. Rate
1.1 kg 238U
0.26 kg 232Th
5 min Data Collection
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Decay of Delayed Neutron Emission
Identifies Fissionable Material

• 10σ Difference Between 238U and 232Th
• Limited Data for (γ,f) to Make Prediction for Other Isotopes
• Need Accurate Measurement of Delayed Group Parameters
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Neutron Time of Flight to Detect Prompt Neutrons

• Time Spectrum
– TAC Started by Accelerator Pulse
– TAC Stopped by Fast Scintillator (Proton Recoil Detector)

• Shield by ~8” of Pb
• ~1.8 ns Bremsstrahlung Pulse
• 100 to 1000 More Prompt Compared to Delayed

-

W Conv.

e-

8 ft

n

238U

Fast Scint

1 m

0 200 400 600
0

1

2

3

4

 1.11 m
 2.01 m

N
or

m
al

iz
ed

 Y
ie

ld

Time (ns)

94.5 ns

171 ns

Photons



High-Energy Neutrons Distinguish Fissionable Isotope

• Lower Energy Bremsstrahlung
– (γ,f) → High-Energy Neutrons (i.e. Watts Spectrum)
– (γ,n) → Neutron Energy Limited; En < Emax-EThr

• Isotopic Specificity?
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High-Energy Neutrons Signify Fissionable Material

• Significant High-Energy Neutrons from 238U
• Lower Energies (~7 MeV) May Be Advantageous

– Allows Simpler Detectors?
• Need Accurate Measurement of Neutron Energy Distribution
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Prompt to Delayed Neutron Ratio
Identifies Fissionable Material

• Preliminary Data
• Expect Differences in Ratios
• Heavily Dependent on Non-Fissionable Constituents
• Need Accurate Prompt and Delayed Yield Measurements
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Differences in (γ,f) Cross Sections
Identifies Fissionable Material

• Measure Relative (γ,f) Yield (e.g. Yield at Two Energies)
• Relative Yield Difference for Different Isotopes
• Need Accurate Fission Cross Sections
• Need Accurate # Neutrons per Fission
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Data Needs for Materials Accountability 

• Fission Cross Sections
• γ-Ray Emission Data

– Prompt Energy Distribution
– Delayed Energy Distribution
– NRF Level in 235U, 239Pu etc…

• Neutron Emission Data
– Delayed Group Parameters
– Prompt Energy Distribution
– Number of Neutrons per Fission

• Fragment Distribution

• Photonuclear Cross Sections Poorly Known
• Significant Overlap with DHS Data Needs

Data Needs 
Mentioned Yesterday



Idaho Accelerator Center
• Electrons

– 1.2 MeV DC Accelerator
– 4 MeV LINACs
– 10 MeV Induction Accel. (~10 kA)
– 25 MeV LINAC
– 45 MeV Short Pulse LINAC

• X-Rays
– X-Ray Tubes: ~450 keV
– Monoenergetic LCS: Energy ~30 keV
– 137Cs Sheppard Source: 13 Ci

• Ions
– 2 MeV Van de Graff

• Neutrons
– Electron LINACS
– Variety of Sources

L Band Traveling Wave Linac

• Infrastructure
– ~35,000 sq. feet Lab Space
– Machine Shop
– Electronics Shop



Physics Department Starts New Ph.D. Program

• Physics and Health Physics

• Doctor Of Philosophy in Applied Physics  
– Program Started in August 2005

• Student Population
– Graduate: 67
– Undergraduate: 100 (Doubled Since 2002)

• Faculty Positions 17
– Almost Exclusively Nuclear



Identification of Fissionable Material is Also Critical

• Nonproliferation
– Verify Contents of Stored Weapons Material
– Prevent Weapons Material Theft

• Fuel Reprocessing
– Prevent Material Diversion
– Quality Assurance of Material Streams

• Waste
– Allows Handling Decisions of Legacy Waste

• Security
– 238U and 232Th are Naturally Occurring and Used in Industry
– Imperative to Eliminate Positives that are not a Security Concern



Recent Paper in Applied Physics Letters



System Being Developed for Field Deployment

• Collaboration between PACECO, Casper-Philips and ISU
– Scan Entire 40 ft. Container in ~60 sec.
– Construct True Prototype System
– Can Easily Add Identification Technology



Integrated Detection of γ-rays and Neutrons Needed
• Neutrons

– Advantages
• Low Background
• “Easy” to Detect in Accelerator Environments
• Fissionable Isotopes “Only” Delayed Neutron Emitters
• Highly Penetrating through High-Z Materials

– Disadvantages
• Shielded/Absorbed by Low-Z Materials (e.g. Hydrogen)
• Material Specificity Lacking (i.e. Difficult to Identify Material)

• γ-rays
– Advantages

• Excellent Material Specificity
• Highly Penetrating through Low-Z Materials
• Abundant Production

– Disadvantages
• High Background
• Difficult to Detect in Accelerator Environments
• Easily Shielded/Absorbed by High-Z Materials (e.g. Lead)



Identify at “Any” Accelerator Repetition Rate

20 MeV Bremsstrahlung
7.5 to 60 Hz Rep. Rate
1.1 kg 238U
5 min Data Collection
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NRF Integrated Cross Sections are Small

• Largest Width in 238U Γο≈30 meV
– Integrated Cross Section ~7×10-5 bn·MeV
– Integrated Cross Section Proportional to Width

• Widths Smaller in 235U Γο≈8 meV(Estimate Only)
– Strengths Fragmented in Odd Isotopes (Larger Level Density)

• Fission Width in 238U ~7 MeV
– Maximum Cross Section ~180 mbn
– Integrated Cross Section ~1 bn·MeV

D. P. McNabb



Simulations Suggest NRF Reaction Rates Are Small

• Reaction Rate for Assumed 235U Line Γ≈8 meV
– 0.16 s-1·μA-1·g-1 @ 5 MeV
– 2×10-5 s-1·μA-1·g-1 after Solid Angle for 7 cm HPGe Detector

• Reaction Rate for (γ,f) in 238U Line
– 1.6×106 s-1·μA-1 @ 5.5 MeV
– 7.4×109 s-1·μA-1 @ 10 MeV
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Prompt Neutrons Will be More Sensitive

• 100 Times More High-Energy Neutrons
• Lower-Energies Better for Prompt (Beneficial for Rad Safety?)
• Higher Energies Better for Delayed
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